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Abstract
We study some properties of the Ising model in the plane of the complex
(energy/temperature)-dependent variable u = e−4K , where K = J/(kBT ),
for nonzero external magnetic field, H. Exact results are given for the phase
diagram in the u plane for the model in one dimension and on infinite-length
quasi-one-dimensional strips. In the case of real h = H/(kBT ), these results
provide new insights into features of our earlier study of this case. We also
consider complex h = H/(kBT ) and µ = e−2h. Calculations of complex-u
zeros of the partition function on sections of the square lattice are presented.
For the case of imaginary h, i.e., µ = eiθ , we use exact results for the quasi-1D
strips together with these partition function zeros for the model in 2D to infer
some properties of the resultant phase diagram in the u plane. We find that
in this case, the phase boundary Bu contains a real line segment extending
through part of the physical ferromagnetic interval 0 � u � 1, with a right-
hand endpoint urhe at the temperature for which the Yang–Lee edge singularity
occurs at µ = e±iθ . Conformal field theory arguments are used to relate the
singularities at urhe and the Yang–Lee edge.

PACS numbers: 05.50.+q, 64.60.Cn, 68.35.Rh, 75.10.H

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Ising model serves as a prototype of a statistical mechanical system which undergoes a
phase transition in the Z2 universality class with associated spontaneous symmetry breaking
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and long-range order. At temperature T on a lattice � in an external field H, this model is
defined by the partition function Z = ∑

{σj } e−βH, with Hamiltonian

H = −J
∑

〈jj ′〉
σjσj ′ − H

∑

j

σj , (1.1)

where σj = ±1 are the classical spin variables on each site j ∈ �,β = (kBT )−1, J is the
spin–spin exchange constant, and 〈jj ′〉 denote nearest-neighbor sites. We use the notation
K = βJ, h = βH, u = e−4K and µ = e−2h. The free energy is F = −kBTf , where the
reduced free energy is f = limn→∞ n−1 ln Z, with n being the number of lattice sites in
�. Physical realizations of the Ising model include uniaxial magnetic materials, structural
transitions in binary alloys such as β brass, and the lattice-gas model of liquid–gas phase
transitions. The two-dimensional version of the model was important partly because it
was amenable to exact solution in zero external magnetic field and the critical point was
characterized by exponents that differed from mean-field theory (Landau–Ginzburg) values
[1–3].

The generalization of h and K from real to complex values was pioneered by Yang and
Lee [4] and Fisher [5], respectively. The values of u where the model has a paramagnetic-
to-ferromagnetic (PM–FM) phase transition and a paramagnetic-to-antiferromagnetic (PM–
AFM) phase transition occur where certain curves in the complex-u plane cross the positive
real-u axis. These curves define boundaries Bu of complex-u extensions of the physical
phases of the model and arise via the accumulation of zeros of the partition function in the
thermodynamic limit. Complex-u singularities affect the convergence of low-temperature
series expansions [6]. Although the two-dimensional Ising model has never been solved
exactly in an arbitrary nonzero external magnetic field H, the free energy and magnetization
have been calculated for the particular imaginary values h = i(2� + 1)π/2 with � ∈ Z, which
map to the single value µ = −1 [4, 7]. In previous work we presented exact determinations
of the boundaries Bu for this µ = −1 case on various 2D lattices [8–10]. We investigated
the complex-u phase diagram of the Ising model on the square lattice for physical external
magnetic field in [9], using calculations of partition function zeros and analyses of low-
temperature, high-field series expansions to study certain singularities at endpoints of lines or
curves of zeros. In that work we considered real h and the complex set h = hr + �iπ/2 (where
� ∈ Z) that yield real µ.

In this paper we continue the study of the complex-u phase diagram of the Ising model
for nonzero h.3 We present exact results for lattice strips, including their infinite-length limits,
and calculations of partition function zeros on finite sections of the square lattice. For the
special case of real h and the subset of complex h that yield real µ, our exact results for these
strips provide new insight into properties that we found for the 2D Ising model in [9] (see also
[12, 13]). Among general complex values of h, we focus on the case where h is pure imaginary.
This is of interest partly because of an important property of the Ising model that was proved
by Yang and Lee [4], namely that for the ferromagnetic case (J > 0), the zeros of the partition
function in the µ plane lie on the unit circle |µ| = 1, i.e., correspond to imaginary h. In the
limit where the number of sites n → ∞, these zeros merge to form the locus Bµ comprised
of a connected circular arc µ = eiθ , where iθ = −2h, passing through µ = −1 (i.e., θ = π )
and extending over on the right to a complex-conjugate pair of endpoints at e±iθe . This result
applies for the Ising model in any dimension; indeed, it does not require � to be a regular
lattice. One interesting question that we address is the following: what is the phase boundary
Bu in the u plane for µ = eiθ when θ is not equal to one of the two exactly solved cases, i.e.,

3 This article is a shortened form of our cond-mat/0711.4639, to which the reader is directed for further details of
our analysis
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θ �= 0 mod π . We answer this question with exact results for quasi-1D strips and study it with
partition function zeros for 2D.

2. Relevant symmetries

We record here some basic symmetries which will be used in our work. On a lattice with even
(odd) coordination number, the Ising model partition function Z is a Laurent polynomial, with
both positive and negative powers, in u (in

√
u). Z is also a Laurent polynomial in µ and hence,

without loss of generality, we consider only the range −iπ/2 < Im(h) � iπ/2. Furthermore,
Z is invariant under the simultaneous transformations h → −h, σj → −σj ∀j ∈ �. The
sign flip h → −h is equivalent to the inversion map: h → −h ↔ µ → 1/µ. Hence,
in considering nonzero real h, one may, with no loss of generality, restrict to h � 0. More
generally, in considering complex h, one may, with no loss of generality, restrict to the unit disc
in the µ plane, |µ| � 1. It is of particular interest to consider two routes in the complex µ plane
that connect the two values of µ where the 2D Ising model has been exactly solved,namely,
µ = 1 (h = 0) and µ = −1 (h = iπ/2). The first such route is the one that we used in
[9],namely, the real segment −1 � µ � 1. A second route proceeds along the unit circle
µ = eiθ . In view of the above symmetries, it will suffice to consider this route as θ increases
from 0 to π . If µ ∈ R, then the set of zeros of Z in the u plane is invariant under u → u∗ and
hence the asymptotic locus Bu is invariant under u → u∗.

The invariance of the set of complex-temperature zeros in u under the complex conjugation
u → u∗ holds not just for real µ but more generally for µ on the unit circle |µ| = 1. This is
proved as follows. For any lattice �, Z(�; u,µ) = Z(�; u, 1/µ). Now if and only if µ = eiθ

(with real θ ), then µ−1 = µ∗. Hence, for this case of µ = eiθ , Z(�; u,µ) = Z(�; u,µ∗).
Now since Z(�, u,µ∗) = [Z(�, u∗, µ)]∗, it follows that if µ = eiθ (with θ ∈ R), then
Z(�; u, eiθ ) = 0 ⇔ Z(�; u∗, eiθ ) = 0, so that the set of zeros of the partition function in the
u plane is invariant under complex conjugation for this case.

3. Properties of the 1D solution

3.1. General

Because of its simplicity and exact solvability, the 1D Ising model provides quite useful insights
into properties for complex temperature and field. Although the physical thermodynamic
properties of the Ising model on quasi-one-dimensional strips are qualitatively different from
those on lattices of dimensionality d � 2, it exhibits properties for complex u and µ that share
similarities with those on higher-dimensional lattices. For example, the phase boundary for
the zero-field Ising model on the square, triangular and honeycomb lattices exhibits a multiple
point at u = −1. (Here, the term ‘multiple point’ is used in the technical sense of algebraic
geometry and is defined as a point where two or more branches of the curves comprising
this boundary cross each other.) This feature of the model on the 2D lattices is also found
to occur for quasi-1D strips such as the Ly = 2 strips of the square [14], triangular [15] and
honeycomb [15] lattices. The fact that the circle theorem of [4] applies for any d means that
there is particular interest in using such strips to get exact results on Bu for |µ| = 1.

3.2. Calculation of Bu and analysis of thermodynamic quantities

The eigenvalues of the transfer matrix for the 1D Ising model are

λ1D,j = eK [cosh(h) ± (sinh2(h) + e−4K)1/2], (3.1)

3
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where the + and − signs apply for j = 1 and j = 2 respectively. The eigenvalues have branch-
point singularities at u = ue, where ue = − sinh2(h) = −(µ + µ−1 − 2)/4 (the subscript e
denotes ‘endpoint’). The partition function is Z(Cn) = Tr[(T1D)n] = ∑2

j=1(λ1D,j )
n. (We

restrict to even n to avoid frustration in the antiferromagnetic case.) The reduced free energy
is f = ln(λ1D,max), where λ1D,dom denotes the maximal eigenvalue. The complex-u phase
boundary Bu is

Bu : cosh(2h) + u + (u − 1) cos(φ) = 0 (3.2)

(which is symmetric under h → −h, i.e., µ → 1/µ). If and only if µ = ±1, it is
also symmetric under K → −K , i.e., u → 1/u. Equation (3.2) is the condition that
there is degeneracy in magnitude among the dominant eigenvalues of the transfer matrix,
|λ1D,1| = |λ1D,2|; for real h, this is equivalent to the condition that the argument of the square
root in (3.1) is negative. The locus Bu is thus a semi-infinite line segment on the negative real
axis,

Bu : u < ue for real h. (3.3)

The right-hand endpoint of this line segment, urhe = ue, occurs at u = 0 if and only if µ = 1,
i.e., h = 0. As |h| increases, ue moves to the left along the negative real axis. For h = 0,Bu

is noncompact in both the u and 1/u planes, while for h �= 0, it is noncompact in the u plane
but compact in the 1/u plane.

For complex h = hr + iπ/2, or equivalently, −1 < µ < 0, the term cosh(h) in the
eigenvalues (3.1) is imaginary, so the condition that these eigenvalues be equal in magnitude
is the condition that the square root should be real. Hence,

Bu : u � ue = 2 + |µ| + |µ|−1

4
for µ < 0. (3.4)

This is a semi-infinite line segment on the positive real axis in the u plane with left-hand
endpoint u�he = ue. For this case of negative real µ, u�he � 1, and u�he → 1+ as µ + 1 → 0+.
As |h| → ∞, u�he → ∞. Again, in the 1/u plane, this is a finite line segment from 0 to the
inverse of the right-hand side of (3.4).

We next determine Bu for µ = eiθ , θ ∈ R. Here, with ue = − sinh2(h) = sin2(θ/2),

Bu : u � sin2(θ/2) for µ = eiθ (3.5)

This is a semi-infinite line segment whose right-hand endpoint urhs = ue occurs in the physical
ferromagnetic interval 0 � urhe � 1, increasing from u = 0 at θ = 0 to u = 1 as θ approaches
π from below. For all values of µ on the unit circle except for the points µ = ±1, the locus Bu

is not invariant under u → 1/u. Finally, for µ = −1, the eigenvalues are equal in magnitude
and opposite in sign so that, with n = 2� even, Z = 2z�(1 − u)�, so that here Bu degenerates
from a one-dimensional locus to the zero-dimensional locus at u = 1.

3.3. Singularities at ue

We discuss here the singularities in thermodynamic quantities at ue for nonzero h. For
nonzero h, h �= i(2� + 1)π/2 with � ∈ Z, the specific heat CH diverges at u = ue with
exponent α′

e = 3/2. Applying the scaling relation 2 − α′ = d/yt (where yt is the thermal
exponent) at u = ue yields yt = 2 at this singularity. For h = i(2� + 1)π/2, i.e., µ = −1, one
has CH(µ = −1) = −2kBK2/ sinh2(2K). Hence, if µ = −1, whence ue = 1, i.e., Ke = 0,
the specific heat is finite at ue, and α′

e = 0. This is the same as we found for the 2D Ising
model at µ = −1, us = 1 in [8].

The per-site magnetization is M = sinh(h)/
√

sinh2(h) + u. For h �= 0 this diverges
at u = ue with exponent βe = −1/2. The susceptibility per site, χ = ∂M/∂H , is
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χ = βu cosh(h)/(sinh2(h) + u)3/2. For h �= 0 and h �= i(2� + 1)π/2, this diverges at
u = ue with exponent γ ′

e = 3/2. Applying the scaling relation β +γ ′ = yh/yt (where yh is the
magnetic exponent) at ue and substituting yt = 2 then yields yh = 2 at this singularity, so that
yt = yh at ue. For h = i(2� + 1)π/2, the cosh(h) factor causes χ to vanish identically, so that
no exponent γ ′

e is defined. Thus, this exactly solved model shows that, just as the value h = 0
is obviously special since it preserves the Z2 symmetry, so also the values h = i(2� + 1)π/2
are special, leading to different values of singular exponents at ue than the values at generic
nonzero values of h.

We denote the density of zeros on Bu as g(u). As u approaches a singular point us on
Bu, one has [5, 16] g(u) ∼ |u − us |1−α′

s as |u − us | → 0. Let us first consider the boundary
Bu for physical h. This locus is the solution to (3.2) and the density of zeros is proportional
to dφ/du. To begin with, we consider real h. It is convenient to introduce a positive variable
u′ = −u. With normalization

∫ ∞
u′

e
du′g(u′) = 1,

g(u′) = 2 cosh(h)

π(1 + u′)
√

u′ − sinh2(h)
. (3.6)

In the neighborhood of a point where the free energy is singular, one can write [9]
g(u′) ∼ |1 − (u′/u′

e)|1−α′
e . For h �= 0, α′

e = 3/2 at ue except for h = (2� + 1)iπ/2,
where α′

e = 0 and g(u) vanishes identically, reflecting the above-mentioned fact that Bu

degenerates to a point at u = ue = 1. These findings are in agreement with the present
analysis of the density of zeros; for h �= (2� + 1)iπ/2, expanding (3.6) as u′ − u′

e → 0+, we
have g(u′) → (2/π)/

√
u′ − u′

e, so 1 − α′
e = −1/2, i.e., α′

e = 3/2.
We next show the close relation between this singular behavior of the density of zeros

on Bu as one approaches the endpoint ue and the singular behavior of the zeros on Bµ as one
approaches the endpoint µe of that locus. We focus on the case J > 0 and h imaginary, for
which Bµ is an arc of the unit circle µ = eiθ extending clockwise from θ = π to θ = θe

and counterclockwise from θ = π to θ = −θe. The density of zeros on Bµ, denoted g(θ),
has the singular behavior at the endpoint eiθe given by g(θ) ∼ (θ − θe)

σ as θ − θe → 0+.
With iθ = −2h, (3.2) becomes cos θ + u + (u − 1) cos φ = 0. Thus, the endpoints occur at
θe = arccos(1 − 2u) = 2 arcsin(

√
u), i.e., in terms of µ, at µe, µ

∗
e = 1 − 2u ± 2i

√
u(1 − u).

The density of zeros (= number of zeros Nz between θ and θ + dθ ) is g(θ) = dNz/dθ =
(2π)−1dφ/dθ . The density is [4] g(θ) = (2π)−1 sin(θ/2)/

√
sin2(θ/2) − u for sin2(θ/2) > u

and g(θ) = 0 for sin2(θ/2) < u.
This density diverges as θ − θe → 0+, with the Yang–Lee edge exponent σ = −1/2

[4, 28]. Given the scaling relation σ = (d − 2 + η)/(d + 2 − η) = dy−1
h − 1, the result

σ = −1/2 is equivalent to yh = 2 at ue. As was noted in [4], for the antiferromagnet (J < 0),
the zeros in the µ plane form a line segment on the negative real µ axis. The singularities
in the density g(µ) at the endpoints of this line segment are again square root singularities.
Thus, for this exactly solved 1D model, 1 − α′

e = σ = −1/2. That is, the exponent 1 − α′
e

describing the singular behavior in the density of partition function zeros in the locus Bu in the
u plane as one approaches the endpoint ue of this locus is the same as the exponent σ = −1/2
describing the singular behavior in the density of zeros in the locus Bµ as one approaches the
endpoints of this locus in the µ plane. This shows, as we have emphasized in our earlier work
[8–10], the value of analyzing the singular locus B, including its slice Bu in the u plane for
fixed µ and its slice Bµ in the µ plane for fixed u, in a unified manner (see also [19, 20]).
For the case of complex µ with |µ| �= 1, our analysis of the singularity at ue goes through as
before. However, in this case, because it is no longer true that µ−1 = µ∗, the coefficients of
the powers of u in the Laurent polynomial comprising Z are not real, so the set of zeros in the
u plane for a given µ is not invariant under complex conjugation.
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4. Exact solution for toroidal ladder strip

4.1. General calculation

Here we consider the ladder strip of the square lattice with doubly periodic (i.e., toroidal)
boundary conditions, which minimize finite-size effects and maintain the same coordination
number, 4, as for the infinite square lattice. From a transfer matrix calculation for this toroidal
ladder (t�) strip (see footnote 3), one has Zt� = Tr[(Tt�)

Lx ] = ∑4
j=1(λt�,j )

n/2, where

λt�,1 = 1 − u (4.1)

and the three other λt�,j ’s are roots of the cubic equation

λ3 + a2λ
2 + a1λ + a0 = 0 (4.2)

where

a2 = −(1 + u + u−1(µ + µ−1)), a1 = (1 − u)[1 + u(µ + µ−1 + 1)]

u2
(4.3)

and a0 = (u − 1)3/u2.

4.2. Properties at some special points

In general, a point (u, µ) is contained in the singular locus Bu if there is a switching of
dominant eigenvalues of the transfer matrix. For u = 1, the eigenvalues are λt�,j = 0 for
j = 1, 2, 3 and λt�,4 = (1 + µ)2/µ, so the eigenvalues are equal at this point if and only if
µ = −1. For this value, they all vanish, as does the partition function. Hence, the zero of the
partition function at this point has a multiplicity of n/2. For the quasi-1D strips considered
here, this point (u, µ) = (1,−1) occurs where Bu degenerates to a point. In contrast, for the
square lattice, it is contained as part of a one-dimensional locus Bu [8].

For u = −1, the eigenvalues are λt�,j = 2, j = 1, 2 and

λt�,j = − 1

2µ
[(1 + µ)2 ±

√
(µ − 1)2(1 + 6µ + µ2)] (4.4)

where the ± signs applies for j = 3, 4. For µ = ±1, all four of these eigenvalues have
magnitudes equal to 2, so (u, µ) = (−1,±1) ∈ B. For real µ > 0, µ �= 1, |λt�,3| is smaller
than 2, decreasing to 0 as µ → 0 or µ → ∞, while |λt�,4| is larger than 2, approaching infinity
as µ → 0 or µ → ∞, so that there are no further switchings of dominant eigenvalues for these
values of µ. We next consider the real interval µ < 0. The polynomial in the square root in
(4.4) is negative for −(3 + 2

√
2) � µ � −(3 − 2

√
2) and |λt�,j | = 2 for all four j = 1, 2, 3, 4

for this interval. Hence, Bu ⊃ {u = −1} for −(3 + 2
√

2) � µ � −(3 − 2
√

2), for this strip.
Although we give the full range of µ, we recall that, owing to the µ ↔ 1/µ symmetry, it is
only necessary to consider the interior of the disc |µ| = 1 since the behavior of Bu determined
by |µ| in the exterior of this disc is completely determined by the values of µ in the interior.

4.3. µ = 1

For µ = 1 (h = 0), the three eigenvalues in addition to λt�,1 are λt�,2 = u−1 − 1 and

λt�,j = 1
2 (u + u−1 + 2 ±

√
u2 + u−2 + 14) (4.5)

where the ± sign applies for j = 3, 4, respectively. For this case, under the symmetry
transformation K → −K , the first two eigenvalues are permuted according to λt�,1 →
−λt�,2, λt�,2 → −λt�,1, while the last two, λt�,3 and λt�,4, are individually invariant.

6
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Figure 1. Complex-temperature phase boundary Bu and partition function zeros in the u plane,
for the Ising model with h = 0, i.e., µ = 1, on an Ly = 2 strip of the square lattice with toroidal
boundary conditions. Zeros are shown for Lx = 200.

For this h = 0 case, in the limit Lx → ∞, the boundary Bu consists of an inner closed
curve, shaped like a lima bean passing through the origin u = 0 where it has an involution,
and through the point u = −1. The rest of Bu, which is related to this inner part by the
u → 1/u symmetry, passes through u = −1 and extends to u = ±i∞. The point u = −1
is an multiple point of osculation type, where the inner and outer curves on Bu coincide with
equal (vertical) tangent. The locus Bu thus separates the u plane into three regions, which
include the respective three intervals of the real axis: (i) R1: u � 0, where λt�,3 is the dominant
eigenvalue; (ii) R2: u < −1, where λt�,1 is dominant; and (iii) R3: −1 � u � 0, where λt�,2

is dominant. Thus, the outer curve is the solution locus of the equation |λt�,1| = |λt�,3|, while
the inner bean-shaped curve is the solution locus of the equation |λt�,2| = |λt�,3|. The outer
curves cross the imaginary axis at u = ±(

√
2 + 1)i, while the inner curves cross at the inverses

of these points, u = ∓(
√

2 − 1)i. In figure 1 we show a plot of complex-temperature zeros
calculated for a long finite strip, which clearly indicate the asymptotic locus Bu.

4.4. 0 � µ < 1

We next consider nonzero h, recalling that we can, without loss of generality, restrict to |µ| � 1
in the µ plane. As h increases from zero through real values, i.e., µ decreases from 1, the part
of the locus Bu that passed through u = 0 for h = 0 breaks apart into two complex-conjugate
arcs whose endpoints move away from the real axis. The outer curves on Bu continue to
extend to infinity in the u plane, passing through the origin 1/u = 0 of the e4K plane. This
is a consequence of the fact that a nonzero (finite) external magnetic field does not remove
the critical behavior associated with the zero-temperature PM–AFM critical point of the Ising
model on a bipartite quasi-one-dimensional infinite-length strip. The locus Bu continues to
intersect the negative real axis, at the point u = −1/µ. The outer part of the locus Bu is
comprised of two complex-conjugate curves that extend to complex infinity, i.e. pass through
1/u = 0. The locus Bu separates the u plane into two regions: (i) region R1, which contains
the real interval −µ−1 � u � ∞, where the root of the cubic with greatest magnitude is
dominant, and (ii) region R2, which contains the real interval −∞ � u � −µ−1, where λt�,1

is dominant. The region R3 that was present for h = 0 is no longer a separate region, but
instead is contained in R1. As an illustration of the case of nonzero h, we show in figure 2 a

7
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Figure 2. Complex-temperature phase boundary Bu and partition function zeros in the u plane,
for the Ising model with h = (1/2) ln 2, i.e., µ = 1/2, on a ladder strip with toroidal boundary
conditions. Zeros are shown for Lx = 200.

plot of the phase diagram for µ = 1/2, for which Bu crosses the real-u axis at u = −2. For
this value of µ, the arc endpoints on Bu are located at u � 0.149480 ± 0.376522i, which are
zeros of the polynomial

64u8 + 128u7 + 1252u6 + 1864u5 + 3448u4 − 1060u3 + 937u2 − 108u + 36, (4.6)

which occurs in a square root in the solution of the cubic equation (4.2).
The behavior of this exactly solved example provides a simple one-dimensional model

of the more complicated behavior on the square-lattice. For the 2D case with any nonzero h,
the part of the singular locus Bu that intersected the real-u axis for h = 0 at the position of
the PM–FM critical point, uPM−FM = 3 − 2

√
2, breaks open, with the two complex-conjugate

endpoints moving away from the real axis, as shown in figure 4 of [9]. This breaking of
the boundary and retraction of the arc endpoints away from the point uPM−FM is in accord with
a theorem that for nonzero (physical) H, the free energy is a real analytic function in an interval
from T = 0 beyond Tc for the PM–FM transition, i.e., in this case, from u = 0 along the
real u past the point u = uc [21]. For our exactly solved quasi-1D strips, the PM–FM critical
point is at u = 0, which is thus the analogue of uPM−FM. So the motion of the right-hand
endpoint of the semi-infinite line segment in (3.3), moving left, away from the point u = 0, as
h increases in magnitude from zero (through real values), is analogous to the motion found in
[9] of the arc endpoints away from the real axis. The ladder strip exhibits a behavior (shown in
figure 2) even closer to that which we found in the 2D case, namely the breaking of the curve
on Bu that passes through the former critical point and the retraction of the complex-conjugate
endpoints on Bu from the real axis.

4.5. µ = −1

We can also use our results to consider the complex-field value µ = −1 and the interval
−1 � µ � 0. We begin with the value µ = −1. Here the eigenvalues of the transfer matrix
take the simple form λt�,1 = 1 − u as in (4.1) and, for the three others: λt�,2 = 1 − u−1,

λt�,j = (u − 1)

2u
[u + 1 ±

√
1 + 6u + u2], (4.7)
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Figure 3. Complex-temperature phase boundary Bu and partition function zeros in the u plane, for
the Ising model with h = ±iπ/2, i.e., µ = −1, on a ladder strip with toroidal boundary conditions.
Zeros are shown for Lx = 150.

where the ± signs apply for j = 3, 4, respectively. All of these eigenvalues vanish at u = 1,
so that Z ∼ (u − 1)Lx ∼ (u − 1)n/2 as u → 1, i.e., Z has a zero of multiplicity n/2 at u = 1.

The boundary Bu is a curve that passes through the points u = 0, u = −1 and 1/u = 0,
separating the u plane into three regions, as shown in figure 3: (i) R1, containing the real
interval u � 0, where λt�,3 is dominant; (ii) R2, including the real interval u � −1, where λt�,1

is dominant; and (iii) R3, the interior of the loop, including the real interval −1 � u � 0, where
λt�,2 is dominant. There is an isolated point u = 1 where all four of the λt�,j ’s, j = 1, . . . , 4,
vanish, and the partition function itself vanishes. The invariance of the locus Bu under the
inversion map u → 1/u is evident in figure 3. The inner loop is the solution of the equation
|λt�,2| = |λt�,3|, while the outer curve extending to u = ±i∞ is the solution of the equation
|λt�,1| = |λt�,3|.

4.6. −1 < µ < 0

As µ increases from −1 toward zero through real values, the above-mentioned loop on the
µ = −1 locus Bu breaks, with its two complex-conjugate arcs retracting from u = 0. These
arcs cross each other at u = −1 with the outer parts continuing to extend upward and downward
to infinity in the u plane, passing through 1/u = 0. The boundary Bu separates the u plane
into two regions, R1 to the right, and R2 to the left, of these semi-infinite arcs. The single
zero with multiplicity n/2 that had existed at u = 1 for µ = −1 is replaced by a finite
line segment in the region µ � 1. As µ moves to the right from −1 toward zero, the real
line segment also moves to the right. In figure 4 we show a plot of zeros for a typical value
in this range, µ = −1/2. For this case, the arc endpoints in the Lx → ∞ limit occur at
approximately u � −0.431 214 ± 0.321 881 5i and the real line segment occupies the interval
1.051945 � u � 2. These are certain zeros of the polynomial

(u − 2)(64u7 + 256u6 − 796u5 + 272u4 + 352u3 + 4u2 − 135u − 18) (4.8)

that occurs in the solution of (4.2) for this case. The line segment that we find on the real-u
axis for −1 < µ < 0 is the analogue of the two line segments on the real-u axis that we

9
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Figure 4. Complex-temperature phase boundary Bu and partition function zeros in the u plane,
for the Ising model with µ = −1/2, on a ladder strip with toroidal boundary conditions. Zeros are
shown for Lx = 100.

found for this range of µ for the model on the square lattice in [9] (as shown in figure 6 of the
reference).

4.7. µ = eiθ

Here we analyze the complex-temperature phase diagram for this strip in the case where h is
pure imaginary, i.e., µ = eiθ . We show that the endpoints of the unit-circle arc on Bµ, i.e., the
Yang–Lee edge singularities, have a corresponding feature in Bu, namely an endpoint of a real
line segment that lies in the interval 0 < u < 1. For µ = eiθ the eigenvalues of the transfer
matrix consist of λ = 1 − u as in (4.1) and the three roots of the cubic (4.2). The coefficients
a2 and a1 in this cubic can be expressed conveniently as

a2 = −(1 + u + 2u−1 cos θ), a1 = u−2(1 − u)[1 + u(2 cos θ + 1)]. (4.9)

We find that for µ on the unit circle, the complex-temperature phase boundary always passes
through the points u = 0, u = −1 and u = ±i∞ (the last corresponding to the single point
1/u = 0 in the plane of the variable 1/u = e4K ). We now prove these results. To show that
the point u = −1 is on Bu, we observe that for u = −1, the eigenvalue given by (4.1) has
the value λ = 2, and the cubic equation for the other three eigenvalues factorizes according to
(λ − 2)[λ2 + 4 cos2(θ/2)λ + 4] = 0, so that these three other eigenvalues are λ = 2 and

λ = 2[− cos2(θ/2) ± i sin(θ/2)
√

1 + cos2(θ/2)]. (4.10)

All of these have magnitude 2, which proves that the point u = −1 is on Bu. Indeed, this
calculation shows, further, that four curves on Bu intersect at u = −1. To prove that the point
u = 0 is on Bu, we first note that for this value of u, the eigenvalue λt�,1 = 1 − u has the value
1. We multiply (4.2) by u2 and then take the limit u → 0, obtaining the equation λ − 1 = 0.
This proves the result since we then have two degenerate dominant eigenvalues. The same
method enables one to conclude that the point 1/u = 0 is on Bu.

For any θ �= 0 mod π , the locus Bu includes a line segment that occupies the interval
−1 � u � 0 and also occupies part of the interval [0,1). We denote the right-hand end of

10
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Figure 5. Phase boundary Bu in the u plane for the Ising model with µ = i, on the ladder strip
with toroidal boundary conditions. Zeros are shown for Lx = 200.

this line segment as ut�,rhe. This right-hand endpoint increases monotonically from 0 to 1 as
θ increases from 0 to π .

As an illustration of the complex-temperature phase diagram for µ on the unit circle, we
consider the case θ = π/2, i.e., µ = i, for which the cubic equation (4.2) takes the form

λ3 − (1 + u)λ2 + u−2(1 − u2)λ + u−2(u − 1)3 = 0. (4.11)

In figure 5 we show the resultant complex-u phase diagram. The boundary has a multiple point
at u = 0 where a real line segment intersects a vertical branch of the curve on Bu. There are
three triple points on Bu, namely the one at u = −1 and a complex-conjugate pair in the second
and third quadrants. The right-hand of the real line segment occurs at ut�,rhe � 0.746 125,
which is the unique real positive root of the polynomial

u8 + 2u7 − 2u6 + 26u5 − 48u4 + 30u3 − 2u2 − 2u − 1 (4.12)

that occurs in a square root in the exact solution of the cubic. Bu also includes two complex-
conjugate curves that extend upward and downward to ±i∞ within the first and fourth
quadrants, passing through 1/u = 0. As is evident from figure 5, the boundary Bu separates
the u plane into four regions: R1 and R2, extending infinitely far to the right and left, and
the two complex-conjugate enclosed phases separated by the part of the real line segment
−1 � u � 0. Qualitatively similar results hold for other values of µ = eiθ with 0 < θ < π .
In table 1 we show the values of urhe,t� and the corresponding values of kBT /J , denoted
as kBTrhe,t�/J , as functions of θ . These are compared with the values for the Ising model
on the infinite line (with periodic boundary conditions), denoted, respectively, as urhe,1D and
kBTrhe,1D/J .

5. Exact solution for cyclic ladder strip

We have also carried out a similar study of Bu for the ladder strip with cyclic, i.e., periodic
longitudinal and free transverse, boundary conditions. For h = 0 the phase boundary Bx for
the q-state Potts model and, in particular, the q = 2 Ising case, was analyzed in [14]. We have
calculated the partition function exactly for the present cyclic strip of arbitrary length, and we
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Table 1. Values of urhe = e−4Krhe and kBTrhe/J = K−1
rhe as a function of θ , with µ = eiθ , for 1D

(columns 2, 4) and the toroidal lattice (t�) strip (columns 3, 5). We use the notation T̄ ≡ kBT /J .

θ urhe,1D urhe,t� T̄rhe,1D T̄rhe,t�

0 − − − −
π/12 (2 −

√
2 +

√
3)/4 � 0.017 0.1918 0.982 2.422

π/6 (2 − √
3)/4 � 0.0670 0.3315 1.480 3.622

π/4 (2 − √
2)/4 � 0.1464 0.452 45 2.082 5.044

π/3 1/4 0.5612 2.885 6.924
π/2 1/2 0.7461 5.771 13.658
2π/3 3/4 0.8846 13.904 32.625

3π/4 (2 +
√

2)/4 � 0.85355 0.9346 25.261 59.107

5π/6 (2 +
√

3)/4 � 0.9330 0.9707 57.690 134.725
→ π → 1 → 1 → ∞ → ∞

focus here on the case of nonzero h. One of the reasons for studying this lattice strip is to
confirm that the singular locusBx again has a line segment in the physical ferromagnetic region,
just as we found for the 1D line and the toroidal strip. We do, indeed, confirm this, showing the
generality of this important result. For example, we find that for this case µ = i, the right-hand
endpoint of the real line segment occurs at xrhe � 0.82942, or equivalently, urhe � 0.687 94,
which is the unique positive root of the polynomial u6 + 29u4 − 48u3 + 27u2 − 4u − 1 that
occurs in a square root in the exact solution to the cubic equation for the eigenvalues of the
transfer matrix. Since the coordination number, 3, of this cyclic lattice strip is intermediate
between the value 2 for the periodic 1D line and the value 4 for the toroidal ladder strip, one
expects that the value of urhe = x2

rhe at a given value of θ would also lie between those for
the 1D line and the toroidal strip. This is verified; we find (see table 1) the respective values
urhe = 0.5, 0.6879, and 0.7461, for the 1D line, and cyclic toroidal ladder strips. These values
increase monotonically as the strip width increases and can be seen to approach the value of
urhe � 0.8 that we infer for the thermodynamic limit of the square lattice from our calculations
of partition function zeros, to be discussed below.

6. Relations between complex-u phase diagram for the Ising model in 1D and 2D for
real µ

In this section we give a unified comparative discussion of how our exact results for Bu on
quasi-1D strips relate to exact results for Bu in 2D for µ = ±1 and the case of real µ in the
interval −1 < µ < 1 that we studied earlier in [9]. We first review some relevant background
concerning the phase diagram for the two cases where this diagram is known exactly for the
2D Ising model, namely µ = 1 (h = 0) and µ = −1 (h = iπ/2)

6.1. µ = 1

The complex-u phase boundary Bu for the square-lattice Ising model is the image in the u
plane of the circles [5] |x ± 1| = √

2, namely the limaçon (figure 1c of [17]) given by

Re(u) = 1 + 2
√

2 cos(ω) + 2 cos(2ω), Im(u) = 2
√

2 sin(ω) + 2 sin(2ω) (6.1)

with −π � ω � π . The outer branch of the limaçon intersects the positive real-u axis at
uPM−AFM = 3 + 2

√
2 (for ω = 0) and crosses the imaginary-u axis at u = ±(2 +

√
3)i
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(for ω = ±5π/12). The inner branch of the limaçon crosses the positive real axis at
uPM−FM = 3 − 2

√
2 (for ω = π ) and the imaginary-u axis at u = ∓(2 − √

3)i (for
ω = ±11π/12). The limaçon has a multiple point at u = −1 (for ω = ±5π/4) where
two branches of Bu cross each other at right angles. When u = −1, there are also branches of
the limaçon passing through Im(u) = ±2

√
2i (for ω = ±π/2). The boundaryBu separates the

u plane into three phases, which are the complex extensions of the physical PM, FM and AFM
phases. Since the infinite-length strips are quasi-1D, the Ising model has no finite-temperature
phase transition on these strips, and is critical only at T = 0. Thus, for h = 0, the boundary
Bu passes through u = 0 and 1/u = 0. However, just as for the square lattice, for the toroidal
strip the boundary Bu separates the u plane into three regions, as is evident in figure 1. One
can envision a formal operation on the boundary curve Bu for the toroidal ladder strip that
transforms it into the Bu for the 2D lattice, namely to move the crossing at u = 0 to uPM–FM,
which, owing to the u ↔ 1/u inversion symmetry, automatically means that the part of the
boundary Bu that goes to infinity in the u plane is pulled back and crosses the real axis at the
inverse of this point,namely, uPM–AFM.

The complex-u phase boundaries Bu of the Ising model on both the infinite-length 1D
line and the infinite-length ladder strip with toroidal or cyclic boundary conditions have the
property that they pass through u = −1 and, for the toroidal and cyclic ladder strips this is
again a multiple point on Bu, just as it is in 2D. For the toroidal strip, the point u = −1 is
an osculation point, where two branches on Bu intersect with the same tangent, whereas for
the square lattice the branches cross at right angles. Other similarities include the fact that,
e.g., for the toroidal strip, Bu crosses the imaginary-u axis at two pairs of complex-conjugate
points that are inverses of each other, namely u = ±(

√
2 + 1)i and u = ±(

√
2 − 1)i. These

points are in one-to-one correspondence with the points u = ±(2 ± √
3)i where Bu crosses

the imaginary-u axis for the square lattice.

6.2. µ = −1

The phase boundary for the Ising model with µ = −1 on the square lattice was determined in
[8] and consists of the union of the unit circle and a line segment on the negative real axis:

Bu(µ = −1) : {|u| = 1} ∪ {−(3 + 2
√

2) � u � −(3 − 2
√

2)}. (6.2)

It is interesting that the endpoints of this line segment are minus the values of uPM–FM and
uPM−AFM = 1/uPM–FM on the square lattice. The point u = −1 is a multiple point on Bu

where the unit circle |u| = 1 crosses the real line segment at right angles. The latter feature is
matched by the locus Bu for the toroidal ladder strip, as is evident in figure 3.

6.3. 0 � µ < 1

In [9] it was found that as h increases from 0, i.e., as µ decreases from 1 to 0, the inner
loop of the limaçon immediately breaks open at u = uPM–FM, forming a complex-conjugate
pair of prong endpoints ue, u

∗
e that retract from the real axis. In [9] we used calculations

of complex-u partition function zeros together with analyses of low-temperature, high-field
series to determine the locations of these arc endpoints and the values of the exponents α′

e, β
′
e

and γ ′
e describing the singular behavior of the specific heat, magnetization, and susceptibility

at these prong endpoints.
In contrast, the PM–AFM critical point does not disappear. For the antiferromagnetic

sign of the spin–spin coupling, J < 0, as H increases, the Néel temperature TN decreases, or
equivalently, −Kc = |J |/(kBTN) increases, and hence also uZM–AFM increases from its value
of 3+2

√
2 at H = 0 (where the notation ZM follows [9]). As H increases sufficiently, there is a
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tricritical point, and when it increases further to −cJ = c|J |, where c denotes the coordination
number, the Néel temperature is reduced to zero. This means that βZM−AFM → ∞. Thus,
asymptotically as h → ∞,−KZM−AFM/h → c, i.e., the right-hand side of the boundary Bu

moves outward to infinity like u ∼ µ−1/2 as µ → 0.
With the replacement of the finite-temperature PM–FM critical point u = uc by the

zero-temperature critical point u = 0, the boundary Bu for the Ising model on the infinite-
length limit of the toroidal ladder strip reproduces this feature of the model in 2D, namely,
immediate breaking of the loop, as is evident in figure 2. The corresponding boundary Bz

for the infinite-length limit of the cyclic strip also immediately breaks apart from the zero-
temperature PM–FM critical point at u = 0.

6.4. −1 � µ � 0

For µ in the interval −1 < µ � 0, in the 2D case, the partition function zeros calculated in [9]
exhibited patterns from which one could infer that in the thermodynamic limit the resultant
accumulation locus Bu exhibited curves and two line segments, one on the positive and one on
the negative real u axes. (There were also some zeros that showed sufficient scatter that one
could not make a plausible inference about the asymptotic locus in the thermodynamic limit.)
One may thus ask if we obtain qualitatively similar behavior with these exact closed-form
solutions for the model on quasi-one-dimensional strips. For both the 1D line and the toroidal
ladder strip with this range of µ, we find a line segment on the positive real axis (cf (3.4 and
figure 4), in agreement with this feature that we had obtained in 2D. As could be expected, the
quasi-1D strips do not reproduce all of the features that we found for 2D. For example, neither
the 1D line nor the toroidal strip exhibits a real line segment on the negative real axis, either
for the case µ = −1 or for the range −1 < µ < 0, where we did find such a line segment in
2D.

7. Complex-u phase diagram and zeros of the partition function for the square lattice
with µ = eiθ

7.1. Motivation and exact results for θ = 0 and θ = π

In this section we present our calculations of complex-u zeros of the partition function of the
square-lattice Ising model for imaginary h, i.e., µ = e−2h = eiθ with 0 < θ < π . Owing
to the invariance of the model under the inversion µ → 1/µ, it suffices to consider this
half-circle. This study is a continuation of our earlier investigation in [8, 9] of the complex-u
phase diagram of the model for real nonzero external magnetic fields (hence 0 � µ � ∞) and
the subset of complex h of the form h = hr ± iπ/2 yielding negative real µ, and thus covering
the interval −∞ � µ � 0.

As noted above, in studying the complex-u phase diagram, it is natural to consider paths
in the µ plane that connect the two values for which this phase diagram is exactly known,
namely µ = 1 (h = 0) and µ = −1 (h = iπ/2). In [9], we considered the path defined by
the real interval −1 � µ � 1. Here we concentrate on the other natural path, namely an arc
along the unit circle µ = eiθ with 0 < θ < π . For µ on this unit circle we have mentioned
above that the boundary Bu is invariant under complex conjugation. One motivation for
studying the complex-u zeros of the partition function for µ on the unit circle is that the
latter locus is precisely where the zeros of the complex-µ zeros of the partition function occur
for physical temperatures in the case of ferromagnetic couplings. Hence, our results in this
section constitute an investigation of the pre-image in the u plane, for the square-lattice Ising
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model, of points on the Yang–Lee circle. Indeed, just as we found with exact results on
infinite-length quasi-1D strips, our calculations of partition function zeros for the model in
2D will lead us to the inference that in the thermodynamic limit the locus Bu for µ = eiθ with
θ �= 0 mod π contains a line segment extending into the physical ferromagnetic region with
a right-hand endpoint urhe that corresponds precisely to the temperature for which the points
µ = e±iθ are the endpoints (Yang–Lee edges) of the arc of the unit circle |µ| = 1 comprising
Bµ. A convenient feature for the study of the complex-u phase diagram for the square-lattice
Ising model with µ = eiθ is that the phase boundary Bu remains compact throughout the
entire range of θ . This is in contrast to the situation for the real path −1 � µ � 1. In that
case, as was discussed in [9], the phase boundary separating the phase where the staggered
magnetization Mst vanishes identically from the AFM phase where Mst is nonzero moves
outward to complex infinity as µ → 0 and then comes inward again as µ passes through 0 and
approaches µ = −1. (It should be noted that although Bu is compact for µ = eiθ with θ ∈ R

for the square lattice, this is not the case with the triangular lattice. On that lattice, for both of
the exactly solved cases θ = 0 and θ = π , the locus Bu contains the respective semi-infinite
line segments −∞ � u � −1/3 and−∞ � u � −1/2 [9].)

In our previous work [9], we tested several different types of boundary conditions including
doubly periodic (toroidal, TBC) and helical boundary conditions (HBC). The latter are periodic
in one direction, say Lx , and helical in the other, say Ly . We found that helical boundary
conditions yielded zeros that showed somewhat less scatter for general µ and were closer
to the exactly known loci Bu for the cases µ = ±1 than the zeros obtained with periodic
boundary conditions. This can be interpreted as a consequence of the fact that for toroidal
boundary conditions, the global circuits around the lattice have length Lx and Ly , while for
helical boundary conditions, while the circuit in the x-direction is still of length Lx the one
in the y-direction is made much longer, essentially LxLy . For the present work we have
again made use of helical boundary conditions and also a set of boundary conditions that
have the effect of yielding zeros that lie exactly on the asymptotic loci Bu for the exactly
known cases µ = ±1. These are defined as follows. We consider two Lx × Ly lattices, with
the x-direction being the longitudinal (horizontal) and the y-direction the transverse (vertical)
one. We impose periodic longitudinal boundary conditions and fixed transverse boundary
conditions. Specifically, we fix all of the spins on the top row to be + while those on the
bottom row alternate in sign as (+ − + − · · ·). For the second lattice, we impose spins on the
top and bottom rows that are minus those of the first lattice; that is, all spins on the top row are
(−), while those on the bottom are (−+−+ . . .). Together, these yield a partition function that
is invariant under the h → −h symmetry. We denote these as symmetrized fixed boundary
conditions (SFBC). In passing, we note that if one used only the first lattice, the corresponding
boundary conditions would correspond to set A of [22]. For h = 0 this set was shown to
yield zeros that lie exactly on the circles |x ± 1| = √

2. For our present work, the boundary
conditions of [22] would not be appropriate, since they violate the h → −h symmetry and
hence also the µ → 1/µ symmetry of the infinite square lattice. In turn, this violation would
have the undesirable consequence that for µ = eiθ , the set of zeros would not be invariant
under complex conjugation and zeros that should be exactly on the real-u axis would not be.
We have found that the symmetrized fixed boundary conditions yield zeros with somewhat
less scatter than helical boundary conditions, and therefore we concentrate on the former in
presenting our results here.

For the analytic calculation of the partition function, we again use a transfer matrix method
similar to that employed in our earlier paper [9]. In that work we performed a number of
internal checks to confirm the accuracy of the numerical calculations of the positions of the
zeros of the partition function. Since for our present study we are performing calculations of
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Figure 6. Complex-u zeros of the Ising model partition function on sections of the square lattice
for µ = eiθ with θ = π/4, π/2, 3π/4, and 11π/12. See text for details of calculation. The exact
phase boundaries for θ = 0 and θ = π are also shown.

partition functions and zeros for considerably larger lattices than we used in [9], we have paid
special attention to guaranteeing the accuracy of the numerical solution for these. Among
other things, we now use the root-solver program called MPSolve [23] to augment the internal
root-solvers in Maple and Mathematica.

We show our results for the complex-u zeros of the Ising model partition function on
Lx × Ly sections of the square lattice with µ = eiθ in figure 6 for various values of θ in
the range 0 < θ < π . These zeros were calculated with the symmetrized fixed boundary
conditions defined above. The curve (6.1) for θ = 0 and the curve and line segment (6.2)
for θ = π represent exact results. A more detailed view of the inner region near u = 0 is
shown in figure 7. The zeros presented for θ �= π/2 were calculated on 12 × 13 lattices. We
present a detailed view of the zeros in the inner central region for π/2 < θ < π in figure 8.
As discussed further below, we devoted a more intensive study to the value θ = π/2, i.e.,
µ = i, and for this case we calculated the partition function and zeros for Lx ×Ly lattices with
sizes Lx and Ly ranging from 12 to 16. We show the results for this µ = i case separately in
figure 9. Concerning exact results, for visual clarity, in figures 7 and 8 for the case θ = π , we
show only the right-hand endpoint of the real line segment (6.2) on Bu at u = −(3 − 2

√
2)

(indicated by the symbols � and ♦, respectively).
As θ increases from zero, we observe a number of interesting features of the complex-u

zeros of the partition function. One important general feature is that for θ �= 0 mod π , zeros
occur on the real axis, extending over an interval from the point where the inner loop of Bu

is inferred to cross this axis, to a right-hand endpoint urhe that increases as θ increases in
the interval 0 < θ < π . We infer that in the thermodynamic limit (i) these zeros merge to
form a real line segment on Bu and (ii) the right-hand endpoint, urhe = e−4Krhe ≡ e−4J/(kBTrhe),
corresponds to the temperature Trhe at which the circular arc comprising Bµ has endpoints at
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Figure 7. A closer view of the complex-u zeros near u = 0 for several values of θ in the range
0 < θ < π . The figure also shows, as exact results, the inner part of the curve forming the limaçon
(6.1) for θ = 0 and the unit circle on Bu for θ = π . For θ = π , we show only the right-hand
endpoint, u = −(3 − 2

√
2), of the real line segment on Bu (indicated with the symbol �). The

lattice size is 12 × 13 except for θ = π/2, where Lx and Ly go up to 16.

Figure 8. A closer view of the complex-u partition function zeros in the inner central region for
several values of θ in the range π/2 < θ < π . Lattice size is 12 × 13, as in figure 6.

µ = e±iθ . For infinite temperature, Krhe = 0, this endpoint (the Yang–Lee edge) occurs at
θ = π and as the temperature decreases, the endpoints of the circular arc onBµ move around to
progressively smaller values of θ . As T decreases to the critical temperature Tc = T PM–FM for
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Figure 9. Complex-u zeros of the Ising model partition function with µ = eiπ/2 = i on Lx × Ly

sections of the square lattice with aspect ratio ∼ 1 and Lx and Ly varying from 12 to 16.

the onset of ferromagnetic long-range order, θ → 0,Bµ closes to form the unit circle |µ| = 1,
and for lower temperatures it remains closed. The property that urhe and the corresponding
temperature Trhe increase monotonically with θ in the range 0 < θ < π is equivalent to the
property that the complex-conjugate endpoints of the circular arc comprising Bµ (i.e., the
Yang–Lee edge) at θ increase monotonically from θ = 0 at T = Tc to θ → π as T → ∞.
This thus establishes a one-to-one correspondence between the right-hand endpoint urhe of
the real line segment for a given θ and the temperature at which this θ is the value of the
endpoint of the circular arc on Bµ. The limit θ → 0 involves special behavior, in that this real
line segment shrinks to zero and disappears. The limit θ → π is also special; again, the line
segment on the positive real-u axis disappears in this limit, being replaced by a single zero at
u = 1 with multiplicity n/2 (n = number of sites on the lattice). This zero at u = 1 gives rise
to the term (1/2) ln(u − 1) in the reduced free energy at µ = −1 [4, 7, 8].

Turning on a finite (uniform) magnetic field, whether real or complex, does not remove
the PM–AFM phase transition that occurs for sufficiently large negative K = βJ . It follows
that the outer loop on Bu cannot break. As discussed in [9], this can be shown via a proof
by contradiction. Assume that this outer loop on Bu did break; then one could analytically
continue from the region around K = 0, i.e., u = 1, where the staggered magnetization
Mst vanishes identically, to the physical AFM phase where Mst is nonzero, and similarly
to the complex-u extension of this AFM phase, which would be a contradiction. We find
that as θ increases from 0 to π , the zeros that form the outer loop of Bu in the Re(u) > 0
half-plane move monotonically inward toward the unit circle |u| = 1, which they form for
θ → π . We infer that in the thermodynamic limit, (i) the right-most crossing on Bu decreases
monotonically from u = uPM−AFM = (3 + 2

√
2) � 5.83 to u = 1 as θ increases from 0 to π ;

and (ii) the upper and lower points where the outer loop of Bu crosses the imaginary-u axis
move monotonically inward from u = ±(2 +

√
3)i to u = ±i. From inspection of the actual

zeros that we calculate for various values of θ , we infer the following approximate maximal
values of u at which Bu crosses the positive real-u axis: u � 5.5 for θ = π/4, u � 4.6 for
θ = π/2, and u � 3.3 for θ = 3π/4.
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Recall that for nonzero real h, a theorem [21] guarantees that the free energy for the
ferromagnet is analytic for all temperatures, so Bu must break and retract from the real axis
in the vicinity of what was, for h = 0 the PM–FM phase transition point, uPM–FM [21]. In
contrast, the results of [4, 21] allow the free energy to be non-analytic as H is varied at constant
β or β is varied at constant H (i.e., in both cases, as h is varied) if Re(h) = 0, which is the
situation that we consider here. Our most detailed study of the partition function zeros, for
µ = i (see figure 9) is consistent with the conclusion that the inner loop on Bu does not break
but remains closed. This conclusion is also consistent with our results for other values of θ .
In making this statement, we note that the fact that the zeros on the right-hand side of the
inner loop, calculated on finite lattices, do not extend all the way in to the real axis, does not
constitute evidence of a break in this loop in the thermodynamic limit. For example, even
for the exactly solved case µ = 1, the zeros calculated on finite lattices also do not extend
all of the way down to the real axis. In this context, we also remark on our exact results for
quasi-1D strips; on both the toroidal and cyclic ladder strips, for µ = eiθ , as θ is increased
from 0 to π , the loop on Bu that passes through the critical point (at u = 0) remains intact
and unbroken. (Note that the point at which this loop crosses the real axis for these quasi-1D
infinite-length ladder strips remains at u = 0 as θ increases from 0 to π , while for the model
in 2D the inferred crossing point of the inner loop moves gradually to the left as θ increases
through this range for the square lattice.)

The details of the pattern of zeros in the complex-u region that includes the real interval
−1 � u � 0 are complicated, and there is significant scatter of some of these zeros.
Consequently, we do not try to make further inferences about the form of the complex-u
boundary Bu in this region in the thermodynamic limit. As an example of the kind of feature
that might be present in this limit, one can discern some indication of possible triple points
at u � −0.7 ± 0.2i and u � −0.9 ± 0.5i. A complex-conjugate pair of triple points is,
indeed, present in our exact solution for Bu on the toroidal ladder strip with µ = i, as shown
in figure 5. The scatter of zeros in this region raises the question of whether some part of Bu

might actually fill out two-dimensional areas rather than being one-dimensional (comprised
of curves and possible line segments) in the thermodynamic limit. For the 2D Ising model
in zero field it is easy to see that complex-u zeros generically fill out areas if the spin–spin
exchange constants in the x- and y-directions are unequal, but this is not directly relevant here,
since we only consider the model with isotropic couplings. For isotropic couplings, this area
behavior happens for a heteropolygonal Archimedean lattice, namely the 4 × 8 × 8 lattice
[24], and here again, the origin of this is obvious from the exact form of the free energy (see
(6.5) and figure 7 of [24]). One can fit curves or line segments to many of the zeros in figure 6.
As for the region where the zeros show scatter, our results are not conclusive, and we do not
try to make any inference about whether or not some set of these zeros might merge to form
areas in the thermodynamic limit.

Several other aspects of the real zeros are of interest. First, we find that as θ increases
from 0, there are real zeros not just to the right of the extrapolated point where the inner loop
on Bu crosses the real axis, but also to the left of this point. Indeed, we find that for 0 < θ � π ,
there are zeros on the negative real axis. As θ → π , these occur in the interval of (6.2), i.e.,
−(3 + 2

√
2) � u � −(3 − 2

√
2). On the finite lattices that we have studied, we also have

found complex-conjugate pairs of zeros that are close to the zeros on the real axis.
The value θ = π/2, i.e., µ = i, is the middle of the range under consideration here, and we

have devoted a particularly intensive study to it. In addition to the general plots comparing the
zeros for this value of θ with those for other values of θ , we show the zeros for this case alone
in figure 9. The zeros shown in this figure were calculated for several different lattice sizes
with aspect ratio Ly/Lx � 1 and Lx ranging from 12 to 16. We display the zeros for different
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lattice sizes together to see lattice size-dependent effects. As is evident from the figure, much
of the locus comprised by these zeros is largely independent of lattice size for sizes this great.
These calculations illustrate our general description of the properties of Bu above. From these
zeros we infer that for µ = i, in the thermodynamic limit, (i) the complex-u phase boundary
Bu crosses the real axis at u � 4.6 and the imaginary axis at u � ±2.7i; (ii) there is an inner
loop on Bu which is likely to pass through u = 0, although there is some decrease in the
density of complex zeros in the vicinity of this point; (iii) the locus Bu exhibits a line segment
on the real axis that extends from a right-hand endpoint urhe � 0.8 leftward with components
along the negative real axis; and although the details of this line segment at intermediate points
cannot be inferred with certitude, the left-most endpoint occurs at u�he � −4.5; (v) the phase
boundary Bu thus appears to separate the u plane into at least four regions: (a) the AFM phase
and its complex-u extension, which occupy values of u going outward to complex infinity, (b)
the interior of the outer loop; (c) and the complex-conjugate pair of regions inside the inner
loop, which seems to be divided into an upper and lower part by the real line segment inside
this loop. As regards item (i), the points at which the outer loop of Bu crosses the imaginary-u
axis are consistent, to within the accuracy of our calculations, with being equal to ±(1 +

√
3)i.

7.2. Connections with results on quasi-1D strips for µ = eiθ

With appropriate changes to take account of the change in dimensionality, we can relate these
features to our exact results on quasi-1D strips. For these strips we found that the locus Bu

includes a line segment on the positive real axis in the physical ferromagnetic interval as θ

increases above zero. In the 1D case, we found the simple result urhe = sin2(θ/2) in (3.5)
for the right-hand endpoint of this line segment. For the toroidal and cyclic ladder strips
we illustrated, e.g. for θ = π/2 (µ = i), how it is determined as the root of the respective
polynomials that occur in the solution of a relevant cubic equation for the eigenvalue of the
transfer matrix. In table 1 we showed the values of urhe for the 1D line and the toroidal
strip, together with the corresponding values of the temperature Trhe, as a function of θ ≡ θe.
This table shows how urhe and Trhe increase as θ increases above 0 and approaches π . We
also noted how, for a given value of θ , Trhe increases as one increases the strip width. This
is physically understandable, since a given value of the angle θ corresponds to a higher
temperature and hence larger urhe as the strip width increases because that increase fosters
short-range ferromagnetic ordering.

Another property of the zeros that can be related to our exact results on quasi-1D strips
is the part of the line segment extending to the left of the point where the inner loop appears
to cross the real axis and, indeed, extending to negative real values. For the quasi-1D strips,
these intervals are the same, since the ferromagnetic critical point is at u = 0. For the 1D line
case, the locus Bu, which is u � sin2(θ/2), includes the semi-infinite line segment u < 0.
For the toroidal ladder strip, we find that for any θ in the interval 0 < θ < π,Bu includes
the segment −1 � u � 0 as well as the portion on the positive real axis discussed above. So
there are again similarities with respect to this feature as regards the results for the strips and
for our zeros calculated on patches of the square lattice. In future work it would be of interest
to calculate complex-u zeros of the Ising model partition function with imaginary h on d = 3
lattices, as was done for real h in [25].

8. Connection of singular behavior of the zero density in the µ and u planes

For the ferromagnetic Ising model, studies have been carried out of the singularity at the
endpoint of the circular arc Bµ as θ → θe (Yang–Lee edge) and the associated density of
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zeros g(θ) in the original papers [4] and in works including those by Griffiths, Fisher and
collaborators, and Cardy [26–29]. We recall that for a conformal field theory indexed by
(relatively prime) positive integers p and p′, the central charge c is c = 1 − 6(p − p′)2/(pp′),
with scaling dimensions hr,s = [(pr − p′s)2 − (p − p′)2]/(4pp′), where 1 � r � p − 1
and 1 � s � p′ − 1. Cardy showed that the requirement of a single scaling field (other
than the identity) leads uniquely to the identification of the conformal field theory as M5,2,
which is non-unitary, with central charge c = −22/5 [29]. The scaling dimension for the
single non-identity field is η = 4h1,2 = −4/5. From this and the standard scaling relation
η = d + 2 − 2yh, where yh is the magnetic exponent, it follows that yh = 12/5. Substituting
the value of η into the scaling relation for σ [28] with d = 2 yields the Cardy result σ = −1/6
[29]. Since the theory has only one relevant scaling field, the thermal exponent is the same,
i.e. yt = yh = 12/5. The equal thermal and magnetic exponents determine all of the rest of
the exponents for this critical point, which include ν ′

e = 1/yt = 5/12, α′
e = 2 − (d/yt ) =

7/6, βe = (d − yh)/yt = −1/6, γ ′
e = (2yh − d)/yt = 7/6.

We observe that the fact that the conformal field theory has only a single non-identity
operator and equal thermal and magnetic exponents leads to the conclusion that the exponent
1 − α′

e describing the singular behavior of the density of zeros at the right-hand endpoint
ue = urhe of the positive real line segment on Bu corresponding to a value of θ with
µ = eiθ , 0 < θ < π , is the same as the exponent σ describing the singular behavior of
the density of zeros at the complex-conjugate endpoints of the circular arcs on Bµ.

Now consider a switch from the imaginary values of h relevant for the Yang–Lee edge
singularity to real values of h. These lead to the complex-conjugate arcs on Bu with arc
(prong) endpoints ue and u∗

e that retract from the position of what was the critical point at
u = uc (for h = 0) as |h| increases from zero [9]. Again, the fact that the conformal field
theory has only a single non-identity operator and equal thermal and magnetic exponents
leads us to the further conclusion that the exponent 1 − α′

e describing the singular behavior
of the zeros at the ends of the complex-conjugate arcs in the complex-u plane at ue and u∗

e

with us = ue) is the same as the exponent σ . This agrees with a similar suggestion by Kim
[30]. With α′

e = 7/6, this implies that for the 2D Ising model, g(u) thus diverges at these arc
endpoints with the exponent 1 − α′

e = σ = −1/6. We also conclude that the exact values of
the exponents α′

e = 7/6, βe = −1/6 and γ ′
e = 7/6 for the specific heat, magnetization and

susceptibility given above apply to the arc endpoints at ue and u∗
e . (These results have also

been independently and simultaneously obtained in this manner by B McCoy) These exact
values agree very well with the numerical values that we obtained in [9] from our analysis of
low-temperature, high-field (i.e., small-u, small-µ) series (see table 1 of [9]). These values
had been suggested in [30] based on the assumption that yt = yh = 12/5 for the endpoint of
a locus of zeros in the u plane. Here we have proved the equivalence using conformal field
theory methods.

In [9] we also studied complex values of h corresponding to negative µ in the real
interval −1 < µ < 0. For the solvable case µ = −1 one knows the exponents α′

s and
βs exactly at various singular points, and in [8], from analyses of series, we obtained the
exponent γ ′

s and inferred exact values for this exponent also. These singular points at µ = −1
include the multiple point u = −1, the left- and right-hand endpoints of the line segment
u�he = −(3+2

√
2) and urhe = 1/u�he = −(3−2

√
2), and also the point u = 1. For reference,

in [8] we obtained α′
e = 1, βe = −1/8, and γ ′

e = 5/4 at ue = −(3 − 2
√

2), α′
s = 0 (CH

finite), βs = 1/2, and γ ′
s = 1 at u = −1, and α′

s = 0 (CH finite), βs = −1/4, and γ ′
s = 5/2

at u = 1 (see table 4 of that paper), where the results for α′ and β were exact and the results
for γ ′ were inferred from our analysis of series. (Exponents at urhe = 1/u�he are related
by the u → 1/u symmetry.) For µ close, but not equal, to µ = −1, the line segment on
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the negative real axis shifted slightly, and there appeared a new line segment on the positive
real axis extending inward from the right-most portion of the boundary Bu. We also studied
these singular exponents via series analyses in [9]. In future work it would be worthwhile
to understand better the values of the exponents describing these singularities for negative
real µ.
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